Here is the basic equation for the gaussian equation or normal distribution.  x is the value of the variable and s is the standard deviation; μ is the mean and σ is the standard deviation.

[Graphics:Images/normal Distribution_gr_1.gif]
[Graphics:Images/normal Distribution_gr_2.gif]
[Graphics:Images/normal Distribution_gr_3.gif]
[Graphics:Images/normal Distribution_gr_4.gif]

Here is a plot of the basic normal distrubtion with μ = 0 and σ=1.

[Graphics:Images/normal Distribution_gr_5.gif]

[Graphics:Images/normal Distribution_gr_6.gif]

[Graphics:Images/normal Distribution_gr_7.gif]

Below is the difference of gaussians.  In both gaussians, μ = 0, however the σ's are different fro the two eqautions which allows the different not to sum to 0.  In the first case, the first gaussian will have a σ = 1/2 and the second gaussian will have a σ= 2.  Then the ratios will be changed gradually until the ratio is reversed.

[Graphics:Images/normal Distribution_gr_8.gif]

[Graphics:Images/normal Distribution_gr_9.gif]

[Graphics:Images/normal Distribution_gr_10.gif]

[Graphics:Images/normal Distribution_gr_11.gif]

[Graphics:Images/normal Distribution_gr_12.gif]

[Graphics:Images/normal Distribution_gr_13.gif]

[Graphics:Images/normal Distribution_gr_14.gif]

[Graphics:Images/normal Distribution_gr_15.gif]

Below is a 2-dimensional gaussian function.

[Graphics:Images/normal Distribution_gr_16.gif]

[Graphics:Images/normal Distribution_gr_17.gif]

[Graphics:Images/normal Distribution_gr_18.gif]
[Graphics:Images/normal Distribution_gr_19.gif]
[Graphics:Images/normal Distribution_gr_20.gif]

[Graphics:Images/normal Distribution_gr_21.gif]

[Graphics:Images/normal Distribution_gr_22.gif]


Converted by Mathematica      January 19, 2000